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Abstract

A practical closed loop control based damage detection scheme is presented aiming at detecting small damage in
controlled structures. In this detection method, a deliberately designed sensitive control system is used to augment small
frequency shifts caused by small structural damage. Since a small frequency change can destabilize such a sensitive
control system, it can be easily observed and thus the small damage can be detected. To perform active control of
structures, a modal velocity observer (MVO) is designed by combining two observers, which can be used for multi-mode
control. By properly choosing the parameters in the MVO, it can be made very sensitive to the frequency shift suitable
for small damage detection. To demonstrate this method in detecting small debonding of piezoelectric patches on a
smart beam, a detailed model of beam with partly debonded piezoelectric patches is established based on the Timo-
shenko’s beam theory, in which both transverse and longitudinal vibrations are modeled, and a characteristic equation
is also derived to examine the effect of the debonding on the control performance. Both the model and the control law
are validated by an active vibration control experiment. Finally, an example is given to illustrate application of the
method in piezoelectric actuator debonding detection. The results show that even a small edge debonding in a piezo-
electric actuator patch can make the sensitive control system unstable, and therefore can be detected.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Investigation of damage detection in structures using piezoelectric sensors is widely conducted in recent
years. Many detection methods are based on monitoring the change in modal parameters such as modal
frequencies, mode shapes and modal damping ratios. As one of smart materials, piezoelectric sensors are
increasingly used for health monitoring and on-line detection of delamination in composite structures, and
various detection methods have been developed (see e.g. Islam and Cralg, 1994; Beard and Chang, 1997;
Jian et al., 1997; Xiao et al., 2001; Fukunaga et al., 2002). Zou et al. (2000) gave a detailed review on
vibration-based model-dependent damage detection for composite structures.
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With the emergence of new piezoelectric materials with higher performance, the piezoelectric actuator
can generate large strain and sustain high actuating voltage. Although new piezoelectric materials can
improve the efficiency of active control of smart structures, they also increase the possibility of debonding
of the actuator from its host structure. Seeley and Chattopadhyay (1999) studied the issue of the piezo-
electric actuator debonding in a composite beam by using the finite element method (FEM) based on a
refined higher order theory, and found that length of debonding is a key factor to its effects on dynamic
behavior. When the debonding length is small, the change of modal shapes was not noticeable. Tylikowski
(2001) presented a bending-extensional model of a simply supported laminated beam with debonded
piezoelectric actuator elements, and he reported that no remarkable frequency shifts were observed due to
small actuator debonding. Tong et al. (2001) developed a model of beams with partially debonded
piezoelectric sensors/actuators including adhesive layers, and analyzed effects of debonding on sensing and
actuating behaviors. Sun et al. (2001) investigated actuator debonding on closed-loop control and found
that controlled structures are more vulnerable to debonding and actuator/sensor debonding can signifi-
cantly reduce the control efficiency. Therefore, it is important to find such debonding in its early stage in
controlled structures.

Modal frequency changes caused by damage are one of the most important features used in damage
detection, and information about changes in mode shapes or strain modes is usually employed to localize
damage. However, for the controlled structures, the change in modal characteristics due to debonding of
actuators may be very small because the piezoelectric actuator patches are much smaller than the host
structure. When debonding of the piezoelectric patches is small, frequency change of the whole structure
due to debonding can also be very small (Sun et al., 2001) and it is difficult to detect using open-loop
detection schemes.

To detect a small damage in a structure, closed-loop based damage detection methods may be used to
enhance the sensitivity of the modal characteristics to the damage in the structure. A deliberately designed
sensitive closed-loop control system may be able to detect small damage in a controlled structure, which will
not increase the cost of damage detection, since existing sensors and actuators on the controlled structures
can be employed. However, very limited papers on active damage detection are available in the literature.
Ray and Tian (1999) introduced a concept of enhancing modal frequency sensitivity to damage using
feedback control. The concept is demonstrated for a single-degree-of-freedom structure as well as a finite-
element model of a cantilevered beam. Their simulation results show that the controlled modes by a full-
state feedback controller are more sensitive to changes in structural parameters than the uncontrolled ones.
Recently, they also experimentally demonstrated sensitivity enhancing control used in damage detection in
smart structures (Ray et al., 2000).

It is well known that the control system in a controlled structure is usually designed to control its several
lowest modes since the information relevant to these modes is measured or observed much more easily than
that of higher modes. However, the controlled modes with higher order are more sensitive to debonding of
the actuator in a controlled structure. Therefore, the damage effects on the lowest several modes should be
amplified through active control using certain control laws.

This paper aims to detect the frequency change due to small debonding of piezoelectric actuator patches
in a controlled structure by a sensitive control system. A closed-loop control based detection scheme is
presented to detect debonding of a piezoelectric actuator patch from its host structure. In order to detect
debonding of the actuator patches from the host structure, a modal velocity observer (MVO) is designed by
combining two second order observers to observe the modal velocities, and modal control is performed by
feeding back the observed modal velocities. By choosing parameters, the MVOs can be made very sensitive
to small frequency shift due to changes in parameters of the composite structure. Therefore, small damage
levels in such a controlled structures may significantly alter the properties of the closed loop control and
may even destabilized the control system, and as a result, the small damage can be easily detected. To detect
debonding of actuator patches, a detailed model of a beam with partly debonded piezoelectric patches is
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established based on the Timoshenko’s beam theory, in which both transverse and longitudinal vibration
are considered and adhesive layers are also taken into account. In addition, continuity conditions are
imposed at the interfaces between the debonded and bonded regions to ensure displacement continuity and
force equilibrium. A characteristic equation of the controlled beam is derived. The eigenvalues of the
characteristic equation for the beam controlled by the sensitive control law are used to examine the effects
of actuator debonding on the closed loop system. The detection scheme is demonstrated both theoretically
and experimentally by detecting a small actuator debonding.

2. Modal velocity observer design for detection

To detect the damage in a controlled structure, a deliberately sensitized controller should be designed.
First, the controller should be able to control the undamaged structures efficiently, and second, it should be
made very sensitive to the changes in the structure by adjusting its parameters. It is known that damages in
a structure will change its modal characteristics such as modal frequencies, modal shapes and modal
damping ratios to some extent. Therefore, modal control of structures is reasonable to amplify the changes
of these modal characteristics for each mode of the structure due to the damage. The existing designing
methods (Lee and Moon, 1990; Sun et al., 1999; Sun and Tong, 2001) of modal sensors may not be easy to
be implemented in practice at the presence of structural damage. In this section, a practical MVO is de-
signed which can be used to estimate the designated modal velocity from the sensor output.

The charge output ¢(¢) of a piezoelectric sensor patch in a structure is proportional to the average strain
in the area it covers. According to the superposition principle, the charge output of a sensor is the weighted
sum of all modal displacements, i.e.

o= an0) (1)

where #;(¢) is the ith modal displacement, «; is the coefficient related to the locations and sizes of the sensor
elements and the modal functions of the structures.

In order to extract a single modal velocity #,(¢) whose modal frequency is w;, two observers are employed
as follows. The first observer is designed as

ym(f) + szICclyl,t(t) + wglyl (t) = wglq(t) (2)

where o and (., are natural frequency and damping ratio of this observer respectively. Eq. (2) is a second-
order observer, which functions as a low pass filter. The output y,(¢) of Eq. (2) contains only the com-
ponents whose frequencies are close to or less than w.,. Therefore, in positive position feedback method,
this observer is employed to control the lowest mode of a structure (Sun and Tong, 2001). However, ob-
server (2) cannot be used to observe a single mode except the first mode.

The second observer is designed as

Vo.u(1) + 20028 0012.4(t) + 0fya (1) = Wy (1) (3)

where w, and (., are the natural frequency and damping ratio of the second observer respectively. Note
that the input of the second observer is the velocity output of the first observer.
In order to examine the frequency response of the observers to the input ¢(¢), derive the complex fre-
quency response as
lo/wqg

H(w) = B B (4)
[1 - (w/wcl) +12gclw/wcl][l - (60/0)02) +12€02w/a)62]
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Fig. 1. Magnification factor versus frequency ratio with different damping ratios.

where o is frequency parameter and / = v/ —1. Since the observers aim to extract a single mode from the
sensed signal, in the following sections, w.; and o, are always taken the same value and denoted them by
W, 1.. w1 = wy = .. Denoting 4 = /., the magnification factor |H(4)| and phase angle 6 become

A
VI = 727 = 4Ll + 2( + L)l — )P

L (=22 = 4Lyl
2(4/01 + Cc2)(;“3 - /1)

Fig. 1 is the plot of magnification factor |H(4)| versus frequency ratio 4 with different damping ratios in
the observers. As shown in Fig. 1, the magnification factor has a peak value near A = 1, whereas it ap-
proaches zero as the frequency ratio A is much less or larger than 1. Therefore, the combined observer in
Egs. (2) and (3) can be used as a single MVO by making its natural frequency w. equal to one of the
frequencies of the structures. In this case, only the component with the selected frequency can pass the
observer and other modal information will be suppressed in the output of the observers. It can also be
noted that the damping ratios in the observers have significant effects on the sensitive bandwidth. By
properly adjusting the damping ratios {.; and {,,, the sensitive bandwidth can be made very narrow which
means that only those components whose frequencies are very close to @, will be found in the output. For
example, when {; = 0.7 and {,, = 0.005, the component with frequency w. is amplified by 71 times, but the
amplifier factor for those whose frequencies are less than 95% of . or greater than 105% of w. is less than
6.5. This means that the components with frequency far away from w, will be filtered out by the combined
observers.

To examine the phase difference between the output y,(¢) and the input ¢(¢), the phase angle 6 versus
frequency ratio 4 is plotted in Fig. 2 with different damping ratios. As shown in Fig. 2, the phase angle is
n/2 when A = 1. In this case, the phase difference between y, and ¢(¢) is 90°, and y,(¢) is 180° out of phase
with the current ¢,(¢). It is clear that the combined observer can observe one of the modal velocities from
the charge output ¢(z) of a piezoelectric sensor patch when its frequency is chosen to be equal to this modal
frequency, as shown in Fig. 2.

It is well known that the phase shift of the feedback signal affects closed-loop control much more signi-
ficantly than its amplitude change. Since our purpose is to design a sensitive controller in order to sense

(H(2)| =

(5)
0(2) = tan
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Fig. 2. Phase angle versus frequency ratio with different damping ratios.

small debonding of actuator patches, the phase angle in the neighborhood of A =1 is particularly inte-
resting and plotted in Fig. 3. Fig. 3 shows that the phase angle can be made very sensitive to the frequency
change of the controlled structures by assigning very small damping ratios (., and {.,. For instance, when
{a =C,=0.01, a 1% change of the frequency will lead to a 100% change of the phase angle. Such a
dramatic change of phase angle caused by a small frequency change will destabilize the active control. In
such a way, the closed loop control system can be made very sensitive to the frequency change for the
purpose of detecting small damages.

In conclusion, the combined observers in Egs. (2) and (3) form a MVO that can extract the designed
modal velocities from the charge output of a piezoelectric sensor patch. The output of the MVO can be used
to provide the structures active damping by the following control law:

V(t) = gn(1) (6)
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Fig. 3. Phase angle in the neighborhood of resonance.
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Fig. 4. Block diagram of the control process using MVO.

where ¥ (¢) is the control voltage to be applied on the piezoelectric actuator and g is a control gain. If N,
modes are to be controlled simultaneously, N MVOs are needed and the control voltage can be obtained by

Ne
V()= ewu(t) (7
p
where g; is the control gain for the ith mode, and y»;(¢) is the output of the ith MVO. The multi-mode
control loop is schematically depicted in Fig. 4.

3. Mathematical model of beam with debonded actuator/sensor patches

Consider a slender composite beam with length L, on which several piezoelectric patch pairs are bonded
onto its upper and lower surfaces as actuator and sensor respectively, as shown in Fig. 5. In the following
derivation, assume that all debondings occur throughout the width of the beam and the debonding front
lines are straight and perpendicular to the x-axis. The adhesive layers are assumed to carry constant
transverse shear and peel strains due to their very thin thickness. In the debonded region, it is assumed that
there is no stress transferring between the host beam and piezoelectric actuator or sensor layer. Since the
debonded part of the actuator at the early stage is very small, the classical beam theory cannot accurately
describe the vibration of the short debonded actuator part. Therefore, the Timoshenko’s beam theory is
employed. In addition, contact and friction between the two debonded surfaces are assumed to be negligible
due to the small size of actuator debonding.

For the portion of the host beam covered with piezoelectric patches on its upper and lower surfaces (AB
and CD portions), employing the Timoshenko’s beam theory, the equations of motion can be derived as
follows:

pibmuyy =T +bry,  pbhiwiy = Qs+ bar,  pi 1Y, =M, +btih /2 — 0
P2bhovy y = T — bty + b12,  p2bhowsy = Oy — boy + bos

palatlsy = Moy +b(t1 + 12)h2/2 — Qs,  p3bhiuzy = T3 — b1y

p3bhsws = Qs — boa,  p3J3y, = Mz + btahy /2 — Os

where the subscripts 1, 2 and 3 represent the upper piezoelectric layer, the host beam and the lower
piezoelectric layer respectively, u and w are the longitudinal and transverse displacements, /4 is the thickness,
b is the width of the composite beam, 7; and oy, 7, and o, are shear and peel stresses of the upper and lower

(8)
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Fig. 5. Beam with partially debonded piezoelectric actuator/sensor patches: (a) detailed view of the debonding region, (b) panoramic
view.

adhesive layers respectively, T, O and M are the stress and moment resultants respectively, p is the
equivalent mass densities, Vs is the rotation angle of the line element originally perpendicular to the longi-
tudinal axis, which is given by

Vi=y—wie i=1,23 9)
and y; is the shear strain at the neutral axis and has the form
), = ¢i0;
1 GlAl )
The ¢; in Eq. (10) is a constant depending on shape of the cross section. For a rectangular cross section,

Ci = 12
The stress resultants and bending moments in Eq. (8) can be derived as follows:

i=1,2,3 (10)

E b3
Ty = E\bhyuy, — bes V(t), M, = 112 L,
Ebh3
T, = Exbhyuy,, M, = 212 2 /2% (11)
Esbh

T3 = E3bh3u37x — b€311 V(t), M3 = TW3‘X

where V' (¢) is the uniformly distributed voltage applied on the actuator, E is the Young’s modulus, es; is the
piezoelectric stress constant of the actuator layer. Using the constant shear and peel strain assumption, the
shear and peel stresses in the adhesive layer are given by

Gvi
G = k=l — = (i + b)) /2]
vt (12)
KE;(1 — vy
g; = : U( VL) (WI:H—W,') 121,2

(1= 2va)(1 + v )
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where the subscript v represents the adhesive layers, v is the Poisson’s ratio, and & is a parameter describing
the bonding condition

K — {0 debonding = 1.2 (13)

1 perfect bonding

Eq. (13) indicates that the peel and shear stresses in the adhesive layer are zero in the debonded regions.

When the piezoelectric patch is used as a sensor, there is no external voltage applied on it (i.e. V(¢) = 0),
and the electric charge due to the direct piezoelectric effect can be used to measure the vibration of the
composite beam. If the piezoelectric patch bonded on the lower surface between C and D (see Fig. 5) used
as a sensor, its charge output can be evaluated by

q(l) = /XD be313u3$xdx = be313[u3(xD) — u3(xc)] (14)

where e313 is the piezoelectric stress constant of the sensor. If part of the sensor is debonded from the host
beam, Eq. (14) is still valid.
By introducing the following notations:

piLz h2 El‘ h,‘ hvj Evj .
, — — = — . — — = — i = _7 . = — = 17 3
i E2 ’ ) L ’ i E2 ’ b; hz ’ (/)Lj h2 ﬁl] E2 (] )
X U; w; Tz Qi .
=7 ni — 7 ni = 7 ni — ) ni — ) :1a2a3
$ST MR WeTy, AT NV (15)

M t Ezh% (2381 V(l)
Mm' = ) = — ‘ 3 V;l t,) =
Ezbh%/lz 12 12p2 ( ) E2h2

Eqgs. (8)-(13) can be nondimensionalized as
. . . 12
mikjig = Te + T, Mk, Wy = One+0n, meiuky, =M, + 60,1, — a—in
2
mzk,zﬁnz = Tne— Tt + T2, mzkfwnz =0 —0n + 0
My @300k s = Myn e + 605 (Tur + Ti2) — oc_Q"Z’ myklity = T — T
2
2. 2. 227 12
myk; Wiy = Oze — 0n2y,  M3@303k; Wy = Moz e + 637,5 — a_QnB
2

T = Brovun e — Ve, T = Proattng, T3 = Prosityse

16
M, = ﬁlqj%(xldjl,év M, = ﬁ2§0§(x2l//2,§7 M, = :83§D§°‘3‘ﬁ3,5 (16)
201' 1 —+ v; .
Vi = 0oWpie + Vi = (B(/))Qm', i=1,2,3

1
T = ki7a1 [unz — Uy — 5(901‘//1 + (Pz‘/fz)]

1
T = kot |:un3 —tn =5 (Qathy + (Pz%)]
Op1 = kl er (WnZ - Wnl); O = erZQ(Wn?a - Wﬂl)

where the double dot represents the second order derivation with respect to nondimensional time z,, and the
parameters are defined as
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=@, m=on (i=12,3), o=qpmn
1—v 1 B keB.,; y ko,

kv: 7k:77 aj — i = :1’2
I—2)(1+v) 720 +0) 7 o, 97 o, U ) (17)
Exhy | %
12p,  \/ 12m,

Substituting Egs. (14), (2) and (3) into Eq. (7), the nondimensionalized control voltage becomes

V;z(tn) - zc:gniyZi(tn) (18)

where y»;(,) is the output of the ith MVO to the nondimensionalized charge input
qn(t) = [3a(Cp) — uan(Sc)] (19)

and g,; are the nondimensional control gains given by

gibesiiesns
gni - T

DenOting Yl (6) - (unly T;pwnl 9 l//1 ) in ;Mnl)Ta YZ(é) - (unZv Tn2a Wn2, l//27 Qn27M12)Ta Y?(é) = (un37 T,f3a W3,

Vs, Ous, M) and Y = (Y], Y2, YD) in which 7¢ = T, + V,(¢) (i = 1,3), Eq. (16) can be rewritten into the
following compact form:

Y.=MY + AY for beam with patches (21)

where M € R'3*18 is the mass matrix, A € R'*13 is the state matrix. Note that Eq. (21) is a set of homo-
geneous equations and the control items related to the voltage will appear in the boundary conditions of the
piezoelectric actuator patches for uniformly distributed control voltage.

Similarly, the equation of motion of the host beam itself can also be rewritten as

(20)

Yy = M,Y, + KzYz for host beam (22)

where M, € R*¢ is the mass matrix, A € R®® is the state matrix for the host beam.

The continuity conditions at the interfaces between the perfectly bonded and debonded regions are
needed to ensure displacement continuity and force equilibrium. Therefore, all displacements and stress
resultants at the interface should be continuous, as shown in Fig. 5, which can be expressed as

Y(&) =Y(&) (23)

where &4 is the normalized coordinate of the interface.
The boundary conditions for the host beam and each piezoelectric patch should also be applied. For the
host beam, its boundary conditions can be written in the following general form

D.Y,(0) + DY,(1) =Dy, for Vi, (24)

where D} € R®®, D} € R*¢ and Dy, € R® are known matrices and vector corresponding to the given
boundary conditions, Y,(0) and Y,(1) are the state vectors at both ends of the host beam. When the
boundary conditions are homogeneous, D, = 0. The boundary conditions of the piezoelectric patches have
the similar forms as described in Eq. (24). For instance, the boundary conditions of the ith piezoelectric
actuator patch bonded on the upper surface of the host beam have the form

D!u'Yl (du) + D, Y, (E:u) =Dy, for vz, (25)
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where &, and &, are the nondimensionalized coordinates of the left and right ends of the actuator patch.
For example, the matrices for free-free piezoelectric actuator patch with control voltage ¥, (¢) are

D! =

o
coocoocooc o
coocoo o —
cocoococooo
cocoocoocooo
cocoocoo~o
cocoo—~o o
cocoocoocooco
co—~oo0o O
coocooco
cocoocoooo
o—ocoocoo
—oocooo
coNooX
cCoO— OO =

Similarly, the boundary conditions of the ith sensor patch bonded on the lower surface have the form
DLY, (&) + DY (&) =Dy, for Vs, (27)

where the subscript ‘s’ stands for sensor patches. If there is no mechanical and electrical loads applied on the
boundary of the sensor patch, Dy; = 0.

4. Characteristic equation of the controlled beam with debonded piezoelectric patches

The eigenvalues of the closed loop system can be used to examine the sensitivity of the closed control
system to the small debonding of the piezoelectric actuator patches. In this section, the characteristic
equation is derived for the closed loop controlled beam with partly debonded piezoelectric patches.
Without loss of generality, the derivation of the characteristic equation is given for the case that only one
free—free piezoelectric pair is bonded on the host beam. Assume that the state vector can be separated in
space and time as

Y(& 1) = Y(&) exp(xct,) (28)

where Y(¢) is a function of spatial coordinate &, and « is the eigenvalue. Substituting Eq. (31) into Eqgs. (24)
and (25), we have

Y: (&) = A(k)Y(¢) for beam with patches

= (29)
Y, (&) = Ay(x)Y(¢)  for host beam

where A(x) = A + «K®M and Ay(k) = A + K®M,. Eq. (29) becomes a set of ordinary differential equations
with parameter k, which is very complicated particularly for the debonding case.
Noting Egs. (2) and (3), the control voltage in Eq. (18) can be transformed as

Ne
Vn - qu ZgniHi(K) (30)
i=1

where

ﬁi(’c) - 2 K/wCi 7
(14 (k/wei)” + 2L/ o] [1 4 (k] 0)” 4 2L/ ]

is the transfer function of the ith MVO in which {.;, {»; and w,; are its three parameters.
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For different portions, the solutions of Eq. (29) can be written as follows
Y2(Er) = @oa(K)Y2(0) 0 < ESE,
Y(&) = ®aa(0)Y(Er) r <<
Y(&) = @up(x)Y(Ey) & <&<&p
vz(fc) = (DBC(K)VZ(éB) ¢ < ¢<<&c

where @py € RO*C, @py € R, Dy € R'$*18 and dye € RO*C are transition matrices. The continuity and
boundary conditions become

Y2(Ea) =105 Is 0s]Y(EN) at &=¢E,
Y(E)=Y(&) atéi=¢
Yy(Ep) =[0s Is 06]Y(Ep) at &= &y

(32)

v v (33)
D,Y>(0) + D;Y>(1) =0 host beam
DY, (&4) +DLY, (&) =D,  actuator patch
D!Y;(¢,) + DIY3(¢g) =0 sensor patch
Substituting Egs. (19) and (30) into Eq. (26), the vector D, can be expressed as
D, = B[Y(s) — Y(EA)] (34)
where
1
0
N o 0
B:Zgn,-H,-(K)l1[000000000000100000] (35)
=1 0
0

is a 6 x 18 matrix. Therefore Eq. (33) will become a set of homogeneous equations by moving the control
term D, to the left side of the equations.
Combining Egs. (32)—(34), the equations can be rewritten into the following form

R(k)Z =0 (36)
where
[®os —I 0 0 0 0 0 0
0 Iy [0 —Is 0] 0 0 0 0 0
0 0 D Iz 0 0 0 0
0 0 0 Is —Iig 0 0 0
R(x) = 0 0 0 0 g ~Tig 0 0
0 0 0 0 0 [0 Iy O] 14 O (37)
0 0 0 0 0 0 Dpe g
0 D B 0 0 -B D 0
0 D 0 0 0 0 DI 0
. D, 0 0 0 0 0 0 D |

=il T T I, .\ =T T T T
7= [Yz (0)1 Y2 (CA)v Y (éA)v Y (5d )7 Y (53—)7 Y (58)7 Y2 (éb)ﬂ Y2 (1)]T
in which I and I3 represents 6 x 6 and 18 x 18 identity matrices respectively.
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Eq. (36) is a set of simultaneous homogeneous algebraic equations, which possess a nontrivial solution
only if the determinant of the coefficient matrix R(x) is zero, i.e.

det[R(x)] = 0 (38)

Eq. (38) is the characteristic equation for the closed loop control system, which can give infinite number
of eigenvalues of the controlled beam. It should be pointed out that using Eq. (38) directly to find the
eigenvalues may encounter difficulty in computation because the very thin adhesive layers between the
piezoelectric patches and the host structure make some entries in the coefficient matrix R(kx) extremely
large. To solve this problem, the beam should be divided into several small elements so that all the entries of
the transition matrices between the adjacent dividing points are within a proper range. However, unlike the
FEM, the eigenvalues obtained from the given scheme is not dependent on the number of elements.

The eigenvalues are complex for a controlled system, which give the information of active damping and
frequency for each vibration mode. It is clear from Eq. (28) that all eigenvalues of a stable control system
should have negative real parts. If denote

K = n; 4+ Qql (39)

where #; is the active damping coefficient, €y; is the nondimensional frequency of the actively damped beam,
the damping ratio for the ith mode can be estimated by

. ) (40)
1+ (Qui/n:)

The physical frequency can be obtained by
o4 = kQq; (41)

If the active damping ratio for a given mode is positive, the closed loop control provides an effect
damping to this mode.

5. Experimental implementation and validation

To validate the theoretical model and solution method, the first experiment for active vibration control
of beams using lead zirconate titanate (PZT) patches is designed and performed using four specimens. As
shown in Fig. 5, on the surfaces of each specimen one PZT-51 patch pair is bonded as the actuator pair, and
another pair is used as the sensor. Table 1 lists the material properties and geometrical dimensions of all the
specimens. An edge debonding at the left end of one patch in the actuator pair is introduced using 0.02-mm-

Table 1

Material properties and geometrical dimensions of test specimens
Item Host beam Piezoelectric patch Adhesive layer
Material 5000 series aluminum PZT-51 Super glue
Mass density, kg/m? 2700 7700
Young’s modulus, GPa 69 70 2.4
Poisson’s ratio 0.3 0.3 0.34
Capacitance, pF - 41,220 -
Piezo-constant e;;, m/V - 9.3 -
Thickness, mm 0.89 0.5 0.15
Length, m 0.6 0.04 0.04

Width, m 0.03 0.03 0.03
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thick Teflon film. All the PZT patches are bonded perfectly in specimen 1. The debonding lengths of the
actuator patches are 0.5, 1.0 and 1.5 cm in specimen 2, 3 and 4 respectively. Each specimen is clamped at its
left end and free at the other. The distance between the left ends of the actuator pair and the clamped end is
1 cm, and that of the sensor patches is 8§ cm. In the experiment, only one of the sensor patches is used as the
sensor.

Fig. 6 depicts the test setup for the active control test of aluminum beam. The equipment used includes a
National Instruments Signal conditioner, PI E-507.00 HVPZT power amplifier (three channels, gain
gp = 100) and a computer with a data acquisition system. A Polytec CLV-1000 Laser vibrometer and a
Tektronix 465 oscilloscope are also used to monitor the vibration of the specimens. Based on LabView
graphical programming platform, an active control program is developed using the MVO. After the sensor
signal is put into the signal conditioner and read by the computer, a proper control voltage is generated by
the control program according to the control law. After amplified by the power amplifier, the control voltage
is fed back to the actuator patches to perform closed loop control of the specimens, as shown in Fig. 6(b).

The first three frequencies of the specimens measured in the test are listed in Table 2, and the theoretical
ones are also given. In general, the measured frequencies correlate reasonably to the theoretical ones. The
natural damping ratios for the first three modes of specimen 1 are measured as 0.0045, 0.0013 and 0.001
respectively. To control the first three modes of each specimen, three MVOs are designed and used in the
control software. In the three MVOs, the three natural frequencies (2.45, 13.5 and 34.6 Hz) are used

CLV-1000 Laser
Vibrometer

Laser Head

Actuator Sensor

DAQ board

PI E-507.00
Power amplifier

(b)

Fig. 6. Experiment setup: (a) photo of the overall experimental setup and (b) block diagram of the active control test.



2462 D. Sun, L. Tong | International Journal of Solids and Structures 40 (2003) 2449-2471

Table 2
The first three measured and theoretical frequencies of specimens (Hz)
Mode no. Specimens
Specimen 1 (debonding Specimen 2 (debonding Specimen 3 (debonding Specimen 4 (debonding
length: 0 mm) length: 5 mm) length: 10 mm) length: 15 mm)
Test Theory Test Theory Test Theory Test Theory
1st frequency 245 2.46 2.44 2.46 245 2.45 242 2.44
2nd frequency 13.5 13.94 13.6 13.86 13.7 13.81 13.3 13.75
3rd frequency 34.6 35.22 34.4 34.98 34.8 34.83 339 34.72

respectively, and big damping ratios, ¢, = 0.5 and &, = 0.65, are used in order to make the control more
robust. In the test, by using a negative control gain, the designated mode can be excited. After switching off
the excitation for a while, active control is turned on to control this mode. Note that except the expected
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Fig. 7. (a) Mode 1: sensor and MVO outputs for the controlled modes in experiment; (b) Mode 2: sensor and MVO outputs for the
controlled modes in experiment (continued); (c) Mode 3: sensor and MVO outputs for the controlled modes in experiment (continued).
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mode, other vibration modes can also be slightly excited by switching on and off of the actuating voltage.
Fig. 7 presents the outputs of the sensor and the MVOs in the experiment of the closed loop control for the
four specimens. The real control voltage applied on the actuator patches can be obtained by multiplying the
MVO’s output by 100, the gain of the voltage amplifier. Fig. 7 shows that the first three modes of the beam
can be effectively controlled by the MVO. It can bee seen that each MVO with relatively large damping
ratios can successfully extract the designated modal velocity from the sensor output even when large
debondings of the actuator patches occur. Therefore, the MVO can be used in both damage detection and
active vibration control of structures by properly adjusting its damping ratios.

To compare the test results and the theoretical ones, the control gain in the experiment should be de-
termined first. The output voltage of the sensor patch can be obtained by

V(1) = q(1)/C (42)

where C is the capacitance of the sensor patch. Noting the linearity of the observers in Egs. (2) and (3), the
control gain in the experiment is g,/C, i.e. g = 100/(41,220 x 107'?) = 2.43 x 10°. The nondimensional
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0.08 — A — mode 3, test —e— mode 3, theory

damping ratio

Debonding length (cm)

Fig. 8. Damping ratios for the first three modes: perfectly bonded specimen, debonding length of 0.5 cm, debonding length of 1.0 cm.

control gain can be calculated as 0.094. The damping ratios for the first three modes of the four specimens
obtained by both experiment and simulation are plotted in Fig. 8. Fig. 8 shows that the damping ratios
obtained by theory are in a good agreement with those measured in the experiment. For example, for the
four specimens, theoretical damping ratios of the first mode are 0.0675, 0.06404, 0.06149 and 0.05903 res-
pectively, and those measured in the experiment are 0.072, 0.066, 0.065 and 0.063, the relative errors are less
than 7%. For the first mode, the measured damping ratios are slightly larger than the theoretically predicted
ones because the natural damping is not considered in the theoretical calculation. However, it is noted that
the test damping ratios for the second and third modes are smaller than theoretical ones. This is probably
because the relatively low sampling rate (125 Hz) in the control loop affects the control efficiency of mode 2
and mode 3. In addition, the active control of higher modes may be affected more easily than that of the
first mode by factors such as phase lag and external disturbances.

In the second test, we designed a sensitive controller for the first vibration mode based on the MVO as
described in Section 2 to detect debonding in the specimens used in the first test. Firstly, we deliberately
adjusted the controller to a critical condition (oscillation) for specimen 1 with perfectly bonded actuators.
To this end, the natural frequency and damping ratios are selected as w.=2n x 2.4 rad/s and
(o = (o = 0.02, respectively, and the control gain is taken as g = 0.0016 x 100/(41,220 x 107!%) =
3881610.9. The closed-loop response of the controlled beam to a disturbance is shown in Fig. 9a. It can be
seen that the vibration amplitude of the controlled beam subjected to a transient loading almost keep
unchanged, which indicates that the controlled beam is critically stable. It is expected that a small frequency
change cause by a debonding may destabilize the unrobust control. Then the same sensitive controller was
applied to specimen 2 and 3 respectively without changing any parameters in the controller and the MVO.
The responses of specimen 2 and 3, controlled by the sensitive controller defined in specimen 1, to an
external transient loading are shown in Fig. 9b and c respectively. Clearly, the small frequency difference
between specimen 1 and 2 (or specimen 3) caused by the debonding makes the closed loop control unstable.
It is easy to qualitatively identify the presence of debonding from the rapidly increasing amplitude of the
specimens. This test shows that the present detect methodology can pick up small frequency change due to
the amplifying effect of the deliberately designed sensitive controller based on MVO.

It is worth pointing out that the above detection test of debonding using different specimens may not be
absolutely accurate. This is because the second test aims to experimentally verify the detection method of a
frequency shift due to change in only one structural parameter, e.g., debonding. Due to limited manu-
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Fig. 9. Response of the sensitive control system to actuator debonding: (a) perfectly bonded specimen, (b) debonding length of 0.5 cm
and (c) debonding length of 1.0 cm.

facturing facilities, it is extremely difficult, if not impossible, to artificially introduce the debonding as the
only change to the same specimen system parameters. Therefore, in addition to the introduced debonding,
there may be other parameters, such as manufacturing tolerance and support condition, present that may
also contribute to the frequency shift.

The third test is designed to demonstrate the effectiveness and practicality of the detection method using
the sensitive controller in terms of identifying frequency changes caused by an attached concentrated mass,
rather than stringently realizing debonding as the only one parameter change. A sensitive MVO controller
is designed for specimen 1 and the parameters in the controller are the same as test two so that the active
control of specimen 1 is in a critical status. In this case, the closed loop control of the beam is tailored very
sensitive to frequency changes. When two small mass patches of 2 mm are attached at the free end of the
specimen using double-sided adhesive tapes, the slight change in its fundamental frequency is even not
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noticeable using our equipment. However, this slight frequency change caused by the mass attachment can
be easily detected by the increasing vibration amplitude since it makes the active control unstable. The
attachment of two mass patches of 3 mm decreases the frequency to 2.43 Hz approximately, and it also
destabilizes the control system, as shown in Fig. 10.

The experiment demonstrated the concept of active detection of small damage in structures using a
deliberately designed sensitive MVO controller. Even a small frequency change due to structural damage,
after amplified by the sensitive controller, will destabilize the controlled structure, and consequently, it can
be easily determined by observing the increasing vibration amplitude. In practice, the instability of a
controlled structure may be not acceptable. A possible way of applying this detection concept is that the
controller starts the sensitive “detection mode™ for a short period at a pre-selected interval, and it operates
in the robust mode in most of the time. Another possible way of using this concept is that the detection
procedure is performed on a virtue system whose parameters are measured in real-time from true structure.
In addition, since control failure of an unrobust controller may be caused by several other factors in ad-
dition to the structural damages. In this case, actuator debonding is only one of the possible reasons for
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Fig. 10. Response of the sensitive control system to small patch attachments.
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control destabilization, and therefore, other factors should be also carefully checked before a final detection
conclusion is drawn.

6. Illustrative examples and analysis

As an illustrative example, consider a cantilevered host beam with two pairs of piezoelectric patches,
shown in Fig. 5. The left piezoelectric patch pair, 4/60 long and located 1/60 from its left end to the clamped
end of the beam, is used as the actuator pair. The right piezoelectric pair, which is also 4/60 long and
located 5/60 from its left end to the clamped end, serves as sensors. In this example, only the upper one in
the sensor pair is used as the sensor. The parameters used in the example are: vy = v, = v; = 0.3,
Vo = vy = 0.34, op =1/600, B, =B =0.9, B, =B, =24/700, n, =1, =39 %1078, n, =139 x 1078,
o1 =¢3=05, 0, =03=015 (b, =0, =1).

Firstly, to perform active control of the beam using the MVO given in Eq. (7), the natural frequencies of
the beam should be calculated. Table 3 presents the first 10 eigenvalues of the open loop beam, which gives
the first 10 natural frequencies of the beam. Compared with the host beam itself, the bonded piezoelectric
patches on the host beam increases its first two modal frequencies remarkably and decreases its third to
tenth modal frequencies to different extent.

Table 3
The first 10 eigenvalue pairs of the open loop beam
Beam with piezo-patches Host beam only

K1 +4.2598i +3.5160¢
K2 +24.1919i +22.0342i
K3 +61.5957i +61.6955i
Ky +115.4765i +120.8957i
Ks +192.1925i +199.8431i
K6 +288.6486i +298.5196i
K7 +397.5756i +416.9218i
Ks +526.6086i +555.0445i
Ko +688.5980i +712.8815i
K10 +881.7859i +890.4261i
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Fig. 11. Fundamental frequency versus length and location of edge debonding in actuator patches.
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When an edge debonding occurs between the piezoelectric actuator patch and the host beam, the fre-
quencies of the smart beam change. For the uncontrolled beam, the fundamental frequency will slightly
change with the debonding length and debonding locations, as shown in Fig. 11. In Fig. 11, the effects of the
edge debondings with different lengths introduced in the upper actuator patch on the fundamental fre-
quency are given. It can be seen from Fig. 11 that an edge debonding of the piezoelectric patch will lead to a
reduction of the fundamental frequency of the beam. When the edge debonding is closer to the clamped end
of the beam, it decreases the fundamental frequency more remarkably. However, the frequency change
caused by a small debonding is very small. For example, a 2.5% edge debonding at the left end of the left
piezoelectric patch results in a 0.15% reduction of the fundamental frequency. Detection of such a small
frequency change can be quite difficult if not impossible.

Secondly, the closed loop control of the beam with perfectly bonded piezoelectric actuator patches
should be performed. In general, the higher order controlled modes are much more sensitive to the deb-
onding of the piezoelectric than the lower order modes. For example, when a beam is controlled by a
collocated piezoelectric actuator/sensor pair, the higher order modes are easily destabilized by the actuator
debonding (Sun and Tong, 2002). However, in practice, the higher order modes are not easy to be con-
trolled and they are more likely affected by uncertainties, and the detection based on which may not be
reliable. Therefore, in order to detect small debonding of the piezoelectric patches by closed loop control,
the control system should be made as simple as possible and the control effect should be easily observed. To
this end, we aim at detecting the debonding of the piezoelectric patches by controlling the first mode of the
beam only. When using the MVO (2) and (3) to control the first mode, the frequencies in both observers are
chosen to be equal to the fundamental natural frequency (i.e. 4.26) of the beam. In this example, the same
damping ratios in the two observers are used, i. e. {, = {,; = (.

The active damping ratio for the controlled mode depends on the control gain and the damping ratios
used in the observers, as shown in Fig. 12. When closed loop control provides positive active damping ratio
to the controlled mode, the controlled mode is stable. If the active damping ratio is negative, the controlled
mode becomes unstable. For detection purpose, the control system should be designed stable in the perfect
bonding case. On the other hand, the control system should be sensitive enough to detect small frequency
change of the system, which requests that the active damping ratio should be very small, as indicated in Fig.
3. To this end, we choose the damping ratio in the observers as 0.02, and take the nondimensional control
as 5 x 1073, In this case, when the piezoelectric actuator patches are perfectly bonded on the host beam, the
first eigenvalue of the controlled beam is —0.000043 +4.175; which has a negative real part and hence the
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Fig. 13. Root loci for mode 1 with different debonding lengths at left and right ends of the upper actuator patch.

control of the first modes is stable. However, the active damping ratio for the first mode is 0.001%, which
means the closed control is very sensitive.

Thirdly, the edge debondings of the upper actuator patch are to be detected by the deliberately designed
sensitive control system. To this end, place an edge debonding of 2.5%, 5%, 7.5%, 10%, 12.5% and 15% of
the original length at the both ends of the upper actuator patch respectively, the first eigenvalue of the
closed loop system are calculated from Eq. (38). For different locations of the debonding, the root loci of
the controlled system are presented in Fig. 13 as the debonding length changes. In this figure, all root loci
start from the point (—0.000043 + 4.175i) near the imaginary axis but on the left plane, which indicates that
the designed control system is stable but sensitive for the perfect bonding case. As the debonding length
increases, the real part of the eigenvalue increases too and the root loci enter into the right half plane. For
example, a 2.5% debonding at the left end of the upper actuator patch alters the first eigenvalue from
—0.000043 +4.175i to 0.001 +4.173i, which makes the control of the first mode unstable. The similar trend
of the root loci with the different length of the debonding at the right end of the actuator patch can be
observed. However, the debonding with same length at the right end of the actuator causes less change of
the first eigenvalue than that at the left end.
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Fig. 14. Effect of damping ratio in the MVO on sensitivity of the control system to actuator debonding.
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Since the process from stable to unstable state can lead to a rapid increasing of the vibration amplitude,
it is easy to be observed, and hence a small debonding of the actuator patch can be easily detected. Fig. 13
shows that a very small debonding in the upper piezoelectric actuator patch can destabilize the controlled
mode and consequently can be detected using the sensitive closed loop control system.

Fourthly, we estimate the debonding length of the actuator patch by designing control system with
different sensitivities. The sensitivity of the control system to the debonding of the actuator patch is de-
termined by the control gain and the damping ratios in the MVO. When the damping ratio in the modal
velocity varies slightly, the maximum debonding length that the control system can tolerate is also changed.
For example, when the control gain is 5 x 10~° and the damping ratio is 0.0215, the control system can
tolerate a 10% edge debonding of the actuator patches, whereas it can only endure a 5% debonding when
the damping ratio is 0.0205, as shown in Fig. 14. In other words, if the first mode controlled by the MVO
with damping ratio 0.0205, it becomes unstable only when the debonding length is larger than 5%. Simi-
larly, if the damping ration in MVO is 0.0215, the control collapses only when the debonding length is
larger than 10%. In such a way, the debonding length of the actuator patch can be estimated using control
system with different sensitivities.

7. Conclusion

A practical active control based detection scheme is presented to identify small frequency shift caused by
small damages in a controlled structure. A MVO is designed to perform active vibration control of beams
using piezoelectric actuator/sensor patches. By properly choosing the parameters in the MVO, the closed
loop control system can be made sensitive to small frequency change. In order to apply this method to
detect debonding of piezoelectric patches on a smart beam, a detailed model of beam with partly debonded
piezoelectric patches is established based and a characteristic equation is also derived. The established
mathematical model, the obtained eigenvalues and the MVO are validated by experiment and good
agreement between experimental and theoretical results is observed. The simulation example shows that the
active control based detection method is effective in detecting small actuator debonding. It is found that
even a debonding whose length is only 0.1% of the entire beam can destabilize the designed sensitive control
system, and thus it can be detected.
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