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Abstract

A practical closed loop control based damage detection scheme is presented aiming at detecting small damage in

controlled structures. In this detection method, a deliberately designed sensitive control system is used to augment small

frequency shifts caused by small structural damage. Since a small frequency change can destabilize such a sensitive

control system, it can be easily observed and thus the small damage can be detected. To perform active control of

structures, a modal velocity observer (MVO) is designed by combining two observers, which can be used for multi-mode

control. By properly choosing the parameters in the MVO, it can be made very sensitive to the frequency shift suitable

for small damage detection. To demonstrate this method in detecting small debonding of piezoelectric patches on a

smart beam, a detailed model of beam with partly debonded piezoelectric patches is established based on the Timo-

shenko�s beam theory, in which both transverse and longitudinal vibrations are modeled, and a characteristic equation

is also derived to examine the effect of the debonding on the control performance. Both the model and the control law

are validated by an active vibration control experiment. Finally, an example is given to illustrate application of the

method in piezoelectric actuator debonding detection. The results show that even a small edge debonding in a piezo-

electric actuator patch can make the sensitive control system unstable, and therefore can be detected.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Investigation of damage detection in structures using piezoelectric sensors is widely conducted in recent

years. Many detection methods are based on monitoring the change in modal parameters such as modal

frequencies, mode shapes and modal damping ratios. As one of smart materials, piezoelectric sensors are

increasingly used for health monitoring and on-line detection of delamination in composite structures, and

various detection methods have been developed (see e.g. Islam and Cralg, 1994; Beard and Chang, 1997;

Jian et al., 1997; Xiao et al., 2001; Fukunaga et al., 2002). Zou et al. (2000) gave a detailed review on

vibration-based model-dependent damage detection for composite structures.
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With the emergence of new piezoelectric materials with higher performance, the piezoelectric actuator

can generate large strain and sustain high actuating voltage. Although new piezoelectric materials can

improve the efficiency of active control of smart structures, they also increase the possibility of debonding

of the actuator from its host structure. Seeley and Chattopadhyay (1999) studied the issue of the piezo-
electric actuator debonding in a composite beam by using the finite element method (FEM) based on a

refined higher order theory, and found that length of debonding is a key factor to its effects on dynamic

behavior. When the debonding length is small, the change of modal shapes was not noticeable. Tylikowski

(2001) presented a bending-extensional model of a simply supported laminated beam with debonded

piezoelectric actuator elements, and he reported that no remarkable frequency shifts were observed due to

small actuator debonding. Tong et al. (2001) developed a model of beams with partially debonded

piezoelectric sensors/actuators including adhesive layers, and analyzed effects of debonding on sensing and

actuating behaviors. Sun et al. (2001) investigated actuator debonding on closed-loop control and found
that controlled structures are more vulnerable to debonding and actuator/sensor debonding can signifi-

cantly reduce the control efficiency. Therefore, it is important to find such debonding in its early stage in

controlled structures.

Modal frequency changes caused by damage are one of the most important features used in damage

detection, and information about changes in mode shapes or strain modes is usually employed to localize

damage. However, for the controlled structures, the change in modal characteristics due to debonding of

actuators may be very small because the piezoelectric actuator patches are much smaller than the host

structure. When debonding of the piezoelectric patches is small, frequency change of the whole structure
due to debonding can also be very small (Sun et al., 2001) and it is difficult to detect using open-loop

detection schemes.

To detect a small damage in a structure, closed-loop based damage detection methods may be used to

enhance the sensitivity of the modal characteristics to the damage in the structure. A deliberately designed

sensitive closed-loop control system may be able to detect small damage in a controlled structure, which will

not increase the cost of damage detection, since existing sensors and actuators on the controlled structures

can be employed. However, very limited papers on active damage detection are available in the literature.

Ray and Tian (1999) introduced a concept of enhancing modal frequency sensitivity to damage using
feedback control. The concept is demonstrated for a single-degree-of-freedom structure as well as a finite-

element model of a cantilevered beam. Their simulation results show that the controlled modes by a full-

state feedback controller are more sensitive to changes in structural parameters than the uncontrolled ones.

Recently, they also experimentally demonstrated sensitivity enhancing control used in damage detection in

smart structures (Ray et al., 2000).

It is well known that the control system in a controlled structure is usually designed to control its several

lowest modes since the information relevant to these modes is measured or observed much more easily than

that of higher modes. However, the controlled modes with higher order are more sensitive to debonding of
the actuator in a controlled structure. Therefore, the damage effects on the lowest several modes should be

amplified through active control using certain control laws.

This paper aims to detect the frequency change due to small debonding of piezoelectric actuator patches

in a controlled structure by a sensitive control system. A closed-loop control based detection scheme is

presented to detect debonding of a piezoelectric actuator patch from its host structure. In order to detect

debonding of the actuator patches from the host structure, a modal velocity observer (MVO) is designed by

combining two second order observers to observe the modal velocities, and modal control is performed by

feeding back the observed modal velocities. By choosing parameters, the MVOs can be made very sensitive
to small frequency shift due to changes in parameters of the composite structure. Therefore, small damage

levels in such a controlled structures may significantly alter the properties of the closed loop control and

may even destabilized the control system, and as a result, the small damage can be easily detected. To detect

debonding of actuator patches, a detailed model of a beam with partly debonded piezoelectric patches is
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established based on the Timoshenko�s beam theory, in which both transverse and longitudinal vibration

are considered and adhesive layers are also taken into account. In addition, continuity conditions are

imposed at the interfaces between the debonded and bonded regions to ensure displacement continuity and

force equilibrium. A characteristic equation of the controlled beam is derived. The eigenvalues of the
characteristic equation for the beam controlled by the sensitive control law are used to examine the effects

of actuator debonding on the closed loop system. The detection scheme is demonstrated both theoretically

and experimentally by detecting a small actuator debonding.

2. Modal velocity observer design for detection

To detect the damage in a controlled structure, a deliberately sensitized controller should be designed.
First, the controller should be able to control the undamaged structures efficiently, and second, it should be

made very sensitive to the changes in the structure by adjusting its parameters. It is known that damages in

a structure will change its modal characteristics such as modal frequencies, modal shapes and modal

damping ratios to some extent. Therefore, modal control of structures is reasonable to amplify the changes

of these modal characteristics for each mode of the structure due to the damage. The existing designing

methods (Lee and Moon, 1990; Sun et al., 1999; Sun and Tong, 2001) of modal sensors may not be easy to

be implemented in practice at the presence of structural damage. In this section, a practical MVO is de-

signed which can be used to estimate the designated modal velocity from the sensor output.
The charge output qðtÞ of a piezoelectric sensor patch in a structure is proportional to the average strain

in the area it covers. According to the superposition principle, the charge output of a sensor is the weighted

sum of all modal displacements, i.e.

qðtÞ ¼
X1
i¼1

aigiðtÞ ð1Þ

where giðtÞ is the ith modal displacement, ai is the coefficient related to the locations and sizes of the sensor

elements and the modal functions of the structures.
In order to extract a single modal velocity _ggiðtÞ whose modal frequency is xi, two observers are employed

as follows. The first observer is designed as

y1;ttðtÞ þ 2xc1fc1y1;tðtÞ þ x2
c1y1ðtÞ ¼ x2

c1qðtÞ ð2Þ

where xc1 and fc1 are natural frequency and damping ratio of this observer respectively. Eq. (2) is a second-

order observer, which functions as a low pass filter. The output y1ðtÞ of Eq. (2) contains only the com-

ponents whose frequencies are close to or less than xc1. Therefore, in positive position feedback method,
this observer is employed to control the lowest mode of a structure (Sun and Tong, 2001). However, ob-

server (2) cannot be used to observe a single mode except the first mode.

The second observer is designed as

y2;ttðtÞ þ 2xc2fc2y2;tðtÞ þ x2
c2y2ðtÞ ¼ xc2y1;tðtÞ ð3Þ

where xc2 and fc2 are the natural frequency and damping ratio of the second observer respectively. Note

that the input of the second observer is the velocity output of the first observer.

In order to examine the frequency response of the observers to the input qðtÞ, derive the complex fre-

quency response as

HðxÞ ¼ Ix=xc2

½1� ðx=xc1Þ2 þ I2fc1x=xc1�½1� ðx=xc2Þ2 þ I2fc2x=xc2�
ð4Þ
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where x is frequency parameter and I ¼
ffiffiffiffiffiffiffi
�1

p
. Since the observers aim to extract a single mode from the

sensed signal, in the following sections, xc1 and xc2 are always taken the same value and denoted them by

xc, i.e. xc1 ¼ xc2 ¼ xc. Denoting k ¼ x=xc, the magnification factor jHðkÞj and phase angle h become

jHðkÞj ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1� k2Þ2 � 4fc1fc2k�2 þ ½2ðfc1 þ fc2Þkð1� k2Þ�2

q
hðkÞ ¼ tan�1 ð1� k2Þ2 � 4fc1fc2k

2

2ðfc1 þ fc2Þðk3 � kÞ

ð5Þ

Fig. 1 is the plot of magnification factor jHðkÞj versus frequency ratio k with different damping ratios in

the observers. As shown in Fig. 1, the magnification factor has a peak value near k ¼ 1, whereas it ap-

proaches zero as the frequency ratio k is much less or larger than 1. Therefore, the combined observer in

Eqs. (2) and (3) can be used as a single MVO by making its natural frequency xc equal to one of the
frequencies of the structures. In this case, only the component with the selected frequency can pass the

observer and other modal information will be suppressed in the output of the observers. It can also be

noted that the damping ratios in the observers have significant effects on the sensitive bandwidth. By

properly adjusting the damping ratios fc1 and fc2, the sensitive bandwidth can be made very narrow which

means that only those components whose frequencies are very close to xc will be found in the output. For

example, when fc1 ¼ 0:7 and fc2 ¼ 0:005, the component with frequency xc is amplified by 71 times, but the

amplifier factor for those whose frequencies are less than 95% of xc or greater than 105% of xc is less than

6.5. This means that the components with frequency far away from xc will be filtered out by the combined
observers.

To examine the phase difference between the output y2ðtÞ and the input qðtÞ, the phase angle h versus

frequency ratio k is plotted in Fig. 2 with different damping ratios. As shown in Fig. 2, the phase angle is

p=2 when k ¼ 1. In this case, the phase difference between y2 and qðtÞ is 90�, and y2ðtÞ is 180� out of phase
with the current q;tðtÞ. It is clear that the combined observer can observe one of the modal velocities from

the charge output qðtÞ of a piezoelectric sensor patch when its frequency is chosen to be equal to this modal

frequency, as shown in Fig. 2.

It is well known that the phase shift of the feedback signal affects closed-loop control much more signi-
ficantly than its amplitude change. Since our purpose is to design a sensitive controller in order to sense
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Fig. 1. Magnification factor versus frequency ratio with different damping ratios.
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small debonding of actuator patches, the phase angle in the neighborhood of k ¼ 1 is particularly inte-

resting and plotted in Fig. 3. Fig. 3 shows that the phase angle can be made very sensitive to the frequency

change of the controlled structures by assigning very small damping ratios fc1 and fc2. For instance, when
fc1 ¼ fc2 ¼ 0:01, a 1% change of the frequency will lead to a 100% change of the phase angle. Such a

dramatic change of phase angle caused by a small frequency change will destabilize the active control. In

such a way, the closed loop control system can be made very sensitive to the frequency change for the

purpose of detecting small damages.
In conclusion, the combined observers in Eqs. (2) and (3) form a MVO that can extract the designed

modal velocities from the charge output of a piezoelectric sensor patch. The output of the MVO can be used

to provide the structures active damping by the following control law:

V ðtÞ ¼ gy2ðtÞ ð6Þ
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where V ðtÞ is the control voltage to be applied on the piezoelectric actuator and g is a control gain. If Nc

modes are to be controlled simultaneously, Nc MVOs are needed and the control voltage can be obtained by

V ðtÞ ¼
XNc

i¼1

giy2iðtÞ ð7Þ

where gi is the control gain for the ith mode, and y2iðtÞ is the output of the ith MVO. The multi-mode

control loop is schematically depicted in Fig. 4.

3. Mathematical model of beam with debonded actuator/sensor patches

Consider a slender composite beam with length L, on which several piezoelectric patch pairs are bonded

onto its upper and lower surfaces as actuator and sensor respectively, as shown in Fig. 5. In the following

derivation, assume that all debondings occur throughout the width of the beam and the debonding front

lines are straight and perpendicular to the x-axis. The adhesive layers are assumed to carry constant

transverse shear and peel strains due to their very thin thickness. In the debonded region, it is assumed that

there is no stress transferring between the host beam and piezoelectric actuator or sensor layer. Since the
debonded part of the actuator at the early stage is very small, the classical beam theory cannot accurately

describe the vibration of the short debonded actuator part. Therefore, the Timoshenko�s beam theory is

employed. In addition, contact and friction between the two debonded surfaces are assumed to be negligible

due to the small size of actuator debonding.

For the portion of the host beam covered with piezoelectric patches on its upper and lower surfaces (AB

and CD portions), employing the Timoshenko�s beam theory, the equations of motion can be derived as

follows:

q1bh1u1;tt ¼ T1;x þ bs1; q1bh1w1;tt ¼ Q1;x þ br1; q1J1w1;tt ¼ M1;x þ bs1h1=2� Q1

q2bh2u2;tt ¼ T2;x � bs1 þ bs2; q2bh2w2;tt ¼ Q2;x � br1 þ br2

q2J2w2;tt ¼ M2;x þ bðs1 þ s2Þh2=2� Q2; q3bh3u3;tt ¼ T3;x � bs2

q3bh3w3;tt ¼ Q3;x � br2; q3J3w3;tt ¼ M3;x þ bs2h3=2� Q3

ð8Þ

where the subscripts 1, 2 and 3 represent the upper piezoelectric layer, the host beam and the lower

piezoelectric layer respectively, u and w are the longitudinal and transverse displacements, h is the thickness,
b is the width of the composite beam, s1 and r1, s2 and r2 are shear and peel stresses of the upper and lower

Modal velocity observer 1

StructureSensors Actuators

Compensator 1 Compensator 2
g1

g2

gNc

Modal velocity observer 2
Compensator 1 Compensator 2

Modal velocity observer Nc

Compensator 1 Compensator 2

...

Fig. 4. Block diagram of the control process using MVO.
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adhesive layers respectively, T , Q and M are the stress and moment resultants respectively, q is the

equivalent mass densities, w is the rotation angle of the line element originally perpendicular to the longi-

tudinal axis, which is given by

wi ¼ ci � wi;x i ¼ 1; 2; 3 ð9Þ

and ci is the shear strain at the neutral axis and has the form

ci ¼
ciQi

GiAi
; i ¼ 1; 2; 3 ð10Þ

The ci in Eq. (10) is a constant depending on shape of the cross section. For a rectangular cross section,

ci ¼ 1:2.
The stress resultants and bending moments in Eq. (8) can be derived as follows:

T1 ¼ E1bh1u1;x � be311V ðtÞ; M1 ¼
E1bh31
12

w1;x

T2 ¼ E2bh2u2;x; M2 ¼
E2bh32
12

w2;x

T3 ¼ E3bh3u3;x � be311V ðtÞ; M3 ¼
E3bh33
12

w3;x

ð11Þ

where V ðtÞ is the uniformly distributed voltage applied on the actuator, E is the Young�s modulus, e311 is the
piezoelectric stress constant of the actuator layer. Using the constant shear and peel strain assumption, the

shear and peel stresses in the adhesive layer are given by

si ¼ k1
Gvi

hvi
½uiþ1 � ui � ðhiwi þ hiþ1wiþ1Þ=2�

ri ¼
kiEvið1� mviÞ

ð1� 2mviÞð1þ mviÞhvi
ðwiþ1 � wiÞ i ¼ 1; 2

ð12Þ

Debonding region

)()( += dd YY

Piezoelectric patches

Host beam

Adhesive layer

O A B C D E

d
C

D

E=1

ξ ξ

ξ
ξ

ξ

ξ

–

Fig. 5. Beam with partially debonded piezoelectric actuator/sensor patches: (a) detailed view of the debonding region, (b) panoramic

view.
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where the subscript v represents the adhesive layers, m is the Poisson�s ratio, and k is a parameter describing

the bonding condition

ki ¼
0 debonding

1 perfect bonding

�
i ¼ 1; 2 ð13Þ

Eq. (13) indicates that the peel and shear stresses in the adhesive layer are zero in the debonded regions.

When the piezoelectric patch is used as a sensor, there is no external voltage applied on it (i.e. V ðtÞ ¼ 0),

and the electric charge due to the direct piezoelectric effect can be used to measure the vibration of the

composite beam. If the piezoelectric patch bonded on the lower surface between C and D (see Fig. 5) used
as a sensor, its charge output can be evaluated by

qðtÞ ¼
Z xD

xC

be313u3;x dx ¼ be313½u3ðxDÞ � u3ðxCÞ� ð14Þ

where e313 is the piezoelectric stress constant of the sensor. If part of the sensor is debonded from the host

beam, Eq. (14) is still valid.
By introducing the following notations:

gi ¼
qiL

2

E2

; a2 ¼
h2
L
; bi ¼

Ei
E2

; ui ¼
hi
h2

; uvj ¼
hvj
h2

; bvj ¼
Evj
E2

ðj ¼ 1; 3Þ

n ¼ x
L
; uni ¼

ui
h2

; wni ¼
wi

h2
; Tni ¼

Ti
E2bh2

; Qni ¼
Qi

E2bh2
; i ¼ 1; 2; 3

Mni ¼
Mi

E2bh22=12
; tn ¼

t
L2

ffiffiffiffiffiffiffiffiffiffi
E2h22
12q2

s
; VnðtnÞ ¼

e311V ðtÞ
E2h2

ð15Þ

Eqs. (8)–(13) can be nondimensionalized as

m1k2t €uun1 ¼ Tn1;n þ sn1; m1k2t €wwn1 ¼ Qn1;n þ rn1; m1u
2
1a1k2t €ww1 ¼ Mn1;n þ 6u1sn1 �

12

a2

Qn1

m2k2t €uun2 ¼ Tn2;n � sn1 þ sn2; m2k2t €wwn2 ¼ Qn2;n � rn1 þ rn2

m2u
2
2a2k2t €ww2 ¼ Mn2;n þ 6u2ðsn1 þ sn2Þ �

12

a2

Qn2; m3k2t €uun3 ¼ Tn3;n � sn2

m3k2t €wwn3 ¼ Qn3;n � rn2; m3u
2
3a3k2t €ww3 ¼ Mn3;n þ 6u3sn2 �

12

a2

Qn3

Tn1 ¼ b1a1un1;n � Vn; Tn2 ¼ b2a2un2;n; Tn3 ¼ b3a3un3;n

Mn1 ¼ b1u
2
1a1w1;n; Mn2 ¼ b2u

2
2a2w2;n; Mn3 ¼ b3u

2
3a3w3;n

ci ¼ a2wni;n þ wi; ci ¼
2cið1þ viÞ

biui
Qni; i ¼ 1; 2; 3

sn1 ¼ k1ra1 un2

�
� un1 �

1

2
ðu1w1 þ u2w2Þ

�
sn2 ¼ k2ra2 un3

�
� un2 �

1

2
ðu2w2 þ u3w3Þ

�
rn1 ¼ k1rea1ðwn2 � wn1Þ; rn2 ¼ k2rea2ðwn3 � wn2Þ

ð16Þ

where the double dot represents the second order derivation with respect to nondimensional time tn, and the

parameters are defined as
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ai ¼ uia2; mi ¼ aigi ði ¼ 1; 2; 3Þ; av ¼ uva2

kv ¼
1� m

ð1� 2mÞð1þ mÞ ; kg ¼
1

2ð1þ vÞ ; raj ¼
kgbvj
avj

; reaj ¼
kvbvj
avj

ðj ¼ 1; 2Þ

kt ¼
1

L2

ffiffiffiffiffiffiffiffiffiffi
E2h22
12q2

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
a3
2

12m2

s ð17Þ

Substituting Eqs. (14), (2) and (3) into Eq. (7), the nondimensionalized control voltage becomes

VnðtnÞ ¼
XNc

i¼1

gniy2iðtnÞ ð18Þ

where y2iðtnÞ is the output of the ith MVO to the nondimensionalized charge input

qnðtÞ ¼ ½u3nðnDÞ � u3nðnCÞ� ð19Þ
and gni are the nondimensional control gains given by

gni ¼
gibe311e313

E2

ð20Þ

Denoting Y1ðnÞ ¼ ðun1; T e
n1;wn1;w1;Qn1;Mn1ÞT, Y2ðnÞ ¼ ðun2; Tn2;wn2;w2;Qn2;Mn2ÞT, Y3ðnÞ ¼ ðun3; T e

n3;wn3;

w3;Qn3;Mn3ÞT and Y ¼ ðYT
1 ;Y

T
2 ;Y

T
3 Þ

T
in which T e

ni ¼ Tni þ VnðtÞ ði ¼ 1; 3Þ, Eq. (16) can be rewritten into the

following compact form:

Y;n ¼ M€YYþ eAAY for beam with patches ð21Þ
where M 2 R18�18 is the mass matrix, eAA 2 R18�18 is the state matrix. Note that Eq. (21) is a set of homo-

geneous equations and the control items related to the voltage will appear in the boundary conditions of the

piezoelectric actuator patches for uniformly distributed control voltage.
Similarly, the equation of motion of the host beam itself can also be rewritten as

Y2;n ¼ M2
€YY2 þ eAA2Y2 for host beam ð22Þ

where M2 2 R6�6 is the mass matrix, eAA 2 R6�6 is the state matrix for the host beam.

The continuity conditions at the interfaces between the perfectly bonded and debonded regions are

needed to ensure displacement continuity and force equilibrium. Therefore, all displacements and stress

resultants at the interface should be continuous, as shown in Fig. 5, which can be expressed as

Yðn�
d Þ ¼ Yðnþ

d Þ ð23Þ

where nd is the normalized coordinate of the interface.
The boundary conditions for the host beam and each piezoelectric patch should also be applied. For the

host beam, its boundary conditions can be written in the following general form

Dl
hY2ð0Þ þDr

hY2ð1Þ ¼ Dh; for 8tn ð24Þ

where Dl
h 2 R6�6, Dr

h 2 R6�6 and Dh 2 R6 are known matrices and vector corresponding to the given

boundary conditions, Y2ð0Þ and Y2ð1Þ are the state vectors at both ends of the host beam. When the

boundary conditions are homogeneous, Dh ¼ 0. The boundary conditions of the piezoelectric patches have

the similar forms as described in Eq. (24). For instance, the boundary conditions of the ith piezoelectric

actuator patch bonded on the upper surface of the host beam have the form

Dl
aiY1ðnl

aiÞ þDr
aiY1ðnr

aiÞ ¼ Dai; for 8tn ð25Þ
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where nl
ai and nr

ai are the nondimensionalized coordinates of the left and right ends of the actuator patch.

For example, the matrices for free-free piezoelectric actuator patch with control voltage VnðtÞ are

Dl
a ¼

0 1 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

26666664

37777775; Dr
a ¼

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

26666664

37777775; Da ¼

Vn
0
0

Vn
0

0

26666664

37777775 ¼

1

0
0

1

0

0

26666664

37777775Vn ð26Þ

Similarly, the boundary conditions of the ith sensor patch bonded on the lower surface have the form

Dl
siY1ðnl

siÞ þDr
siY1ðnr

siÞ ¼ Dsi; for 8tn ð27Þ

where the subscript �s� stands for sensor patches. If there is no mechanical and electrical loads applied on the
boundary of the sensor patch, Dsi ¼ 0.

4. Characteristic equation of the controlled beam with debonded piezoelectric patches

The eigenvalues of the closed loop system can be used to examine the sensitivity of the closed control
system to the small debonding of the piezoelectric actuator patches. In this section, the characteristic

equation is derived for the closed loop controlled beam with partly debonded piezoelectric patches.

Without loss of generality, the derivation of the characteristic equation is given for the case that only one

free–free piezoelectric pair is bonded on the host beam. Assume that the state vector can be separated in

space and time as

Yðn; tnÞ ¼ YðnÞ expðjtnÞ ð28Þ

where YðnÞ is a function of spatial coordinate n, and j is the eigenvalue. Substituting Eq. (31) into Eqs. (24)

and (25), we have

Y;nðnÞ ¼ AðjÞYðnÞ for beam with patches

Y2;nðnÞ ¼ A2ðjÞY2ðnÞ for host beam
ð29Þ

where AðjÞ ¼ eAA þ j2M and A2ðjÞ ¼ eAA2 þ j2M2. Eq. (29) becomes a set of ordinary differential equations
with parameter j, which is very complicated particularly for the debonding case.

Noting Eqs. (2) and (3), the control voltage in Eq. (18) can be transformed as

V n ¼ �qqn
XNc

i¼1

gniH iðjÞ ð30Þ

where

HiðjÞ ¼
j=xci

½1þ ðj=xciÞ2 þ 2fc1ij=xci�½1þ ðj=xciÞ2 þ 2fc2ij=xci�
ð31Þ

is the transfer function of the ith MVO in which fc1i, fc2i and xci are its three parameters.
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For different portions, the solutions of Eq. (29) can be written as follows

Y2ðnAÞ ¼ UOAðjÞY2ð0Þ 0 < n6 nA

Yðn�
d Þ ¼ UAdðjÞYðnAÞ nA < n < n�

d

YðnBÞ ¼ UdBðjÞYðnþ
d Þ nþ

d < n < nB

Y2ðnCÞ ¼ UBCðjÞY2ðnBÞ nB < n < nC

ð32Þ

where UOA 2 R6�6, UAd 2 R18�18, UdB 2 R18�18 and UBC 2 R6�6 are transition matrices. The continuity and

boundary conditions become

Y2ðnAÞ ¼ ½ 06 I6 06 �YðnAÞ at n ¼ nA

Yðn�
d Þ ¼ Yðnþ

d Þ at n ¼ nd

Y2ðnBÞ ¼ ½ 06 I6 06 �YðnBÞ at n ¼ nB

Dl
hY2ð0Þ þDr

hY2ð1Þ ¼ 0 host beam

Dl
aY1ðnAÞ þDr

aY1ðnBÞ ¼ Da actuator patch

Dl
sY3ðnAÞ þDr

sY3ðnBÞ ¼ 0 sensor patch

ð33Þ

Substituting Eqs. (19) and (30) into Eq. (26), the vector Da can be expressed as

Da ¼ B½YðnBÞ � YðnAÞ� ð34Þ
where

B ¼
XNc

i¼1

gniHiðjÞ
" # 1

0

0
1

0

0

26666664

37777775½ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 � ð35Þ

is a 6� 18 matrix. Therefore Eq. (33) will become a set of homogeneous equations by moving the control

term Da to the left side of the equations.

Combining Eqs. (32)–(34), the equations can be rewritten into the following form

RðjÞZ ¼ 0 ð36Þ
where

RðjÞ ¼

UOA �I6 0 0 0 0 0 0

0 I6 ½ 06 �I6 06 � 0 0 0 0 0

0 0 UAd �I18 0 0 0 0

0 0 0 I18 �I18 0 0 0

0 0 0 0 UdB �I18 0 0

0 0 0 0 0 ½ 06 I6 06 � �I6 0

0 0 0 0 0 0 UBC �I6

0 Dl
a B 0 0 �B Dr

a 0

0 Dl
s 0 0 0 0 Dr

s 0

Dl
h 0 0 0 0 0 0 Dr

h

26666666666666666664

37777777777777777775
Z ¼ ½YT

2 ð0Þ;Y
T

2 ðnAÞ;Y
TðnAÞ;Y

Tðn�
d Þ;Y

Tðnþ
d Þ;Y

TðnBÞ;Y
T

2 ðnbÞ;Y
T

2 ð1Þ�
T

ð37Þ

in which I6 and I18 represents 6� 6 and 18� 18 identity matrices respectively.
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Eq. (36) is a set of simultaneous homogeneous algebraic equations, which possess a nontrivial solution

only if the determinant of the coefficient matrix RðjÞ is zero, i.e.
det½RðjÞ� ¼ 0 ð38Þ

Eq. (38) is the characteristic equation for the closed loop control system, which can give infinite number

of eigenvalues of the controlled beam. It should be pointed out that using Eq. (38) directly to find the

eigenvalues may encounter difficulty in computation because the very thin adhesive layers between the

piezoelectric patches and the host structure make some entries in the coefficient matrix RðjÞ extremely

large. To solve this problem, the beam should be divided into several small elements so that all the entries of

the transition matrices between the adjacent dividing points are within a proper range. However, unlike the
FEM, the eigenvalues obtained from the given scheme is not dependent on the number of elements.

The eigenvalues are complex for a controlled system, which give the information of active damping and

frequency for each vibration mode. It is clear from Eq. (28) that all eigenvalues of a stable control system

should have negative real parts. If denote

ji ¼ ni þ XdiI ð39Þ
where ni is the active damping coefficient, Xdi is the nondimensional frequency of the actively damped beam,

the damping ratio for the ith mode can be estimated by

fai ¼ � sgnðniÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðXdi=niÞ2

q ð40Þ

The physical frequency can be obtained by

xdi ¼ ktXdi ð41Þ
If the active damping ratio for a given mode is positive, the closed loop control provides an effect

damping to this mode.

5. Experimental implementation and validation

To validate the theoretical model and solution method, the first experiment for active vibration control

of beams using lead zirconate titanate (PZT) patches is designed and performed using four specimens. As

shown in Fig. 5, on the surfaces of each specimen one PZT-51 patch pair is bonded as the actuator pair, and

another pair is used as the sensor. Table 1 lists the material properties and geometrical dimensions of all the

specimens. An edge debonding at the left end of one patch in the actuator pair is introduced using 0.02-mm-

Table 1

Material properties and geometrical dimensions of test specimens

Item Host beam Piezoelectric patch Adhesive layer

Material 5000 series aluminum PZT-51 Super glue

Mass density, kg/m3 2700 7700

Young�s modulus, GPa 69 70 2.4

Poisson�s ratio 0.3 0.3 0.34

Capacitance, pF – 41,220 –

Piezo-constant e31, m/V – 9.3 –

Thickness, mm 0.89 0.5 0.15

Length, m 0.6 0.04 0.04

Width, m 0.03 0.03 0.03
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thick Teflon film. All the PZT patches are bonded perfectly in specimen 1. The debonding lengths of the

actuator patches are 0.5, 1.0 and 1.5 cm in specimen 2, 3 and 4 respectively. Each specimen is clamped at its

left end and free at the other. The distance between the left ends of the actuator pair and the clamped end is

1 cm, and that of the sensor patches is 8 cm. In the experiment, only one of the sensor patches is used as the
sensor.

Fig. 6 depicts the test setup for the active control test of aluminum beam. The equipment used includes a

National Instruments Signal conditioner, PI E-507.00 HVPZT power amplifier (three channels, gain

gp ¼ 100) and a computer with a data acquisition system. A Polytec CLV-1000 Laser vibrometer and a

Tektronix 465 oscilloscope are also used to monitor the vibration of the specimens. Based on LabView

graphical programming platform, an active control program is developed using the MVO. After the sensor

signal is put into the signal conditioner and read by the computer, a proper control voltage is generated by

the control program according to the control law. After amplified by the power amplifier, the control voltage
is fed back to the actuator patches to perform closed loop control of the specimens, as shown in Fig. 6(b).

The first three frequencies of the specimens measured in the test are listed in Table 2, and the theoretical

ones are also given. In general, the measured frequencies correlate reasonably to the theoretical ones. The

natural damping ratios for the first three modes of specimen 1 are measured as 0.0045, 0.0013 and 0.001

respectively. To control the first three modes of each specimen, three MVOs are designed and used in the

control software. In the three MVOs, the three natural frequencies (2.45, 13.5 and 34.6 Hz) are used

Fig. 6. Experiment setup: (a) photo of the overall experimental setup and (b) block diagram of the active control test.
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respectively, and big damping ratios, nc1 ¼ 0:5 and nc2 ¼ 0:65, are used in order to make the control more
robust. In the test, by using a negative control gain, the designated mode can be excited. After switching off

the excitation for a while, active control is turned on to control this mode. Note that except the expected

Table 2

The first three measured and theoretical frequencies of specimens (Hz)

Mode no. Specimens

Specimen 1 (debonding

length: 0 mm)

Specimen 2 (debonding

length: 5 mm)

Specimen 3 (debonding

length: 10 mm)

Specimen 4 (debonding

length: 15 mm)

Test Theory Test Theory Test Theory Test Theory

1st frequency 2.45 2.46 2.44 2.46 2.45 2.45 2.42 2.44

2nd frequency 13.5 13.94 13.6 13.86 13.7 13.81 13.3 13.75

3rd frequency 34.6 35.22 34.4 34.98 34.8 34.83 33.9 34.72
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Fig. 7. (a) Mode 1: sensor and MVO outputs for the controlled modes in experiment; (b) Mode 2: sensor and MVO outputs for the

controlled modes in experiment (continued); (c) Mode 3: sensor and MVO outputs for the controlled modes in experiment (continued).
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mode, other vibration modes can also be slightly excited by switching on and off of the actuating voltage.
Fig. 7 presents the outputs of the sensor and the MVOs in the experiment of the closed loop control for the

four specimens. The real control voltage applied on the actuator patches can be obtained by multiplying the

MVO�s output by 100, the gain of the voltage amplifier. Fig. 7 shows that the first three modes of the beam

can be effectively controlled by the MVO. It can bee seen that each MVO with relatively large damping

ratios can successfully extract the designated modal velocity from the sensor output even when large

debondings of the actuator patches occur. Therefore, the MVO can be used in both damage detection and

active vibration control of structures by properly adjusting its damping ratios.

To compare the test results and the theoretical ones, the control gain in the experiment should be de-
termined first. The output voltage of the sensor patch can be obtained by

VsðtÞ ¼ qðtÞ=C ð42Þ

where C is the capacitance of the sensor patch. Noting the linearity of the observers in Eqs. (2) and (3), the
control gain in the experiment is gp=C, i.e. g ¼ 100=ð41; 220� 10�12Þ ¼ 2:43� 109. The nondimensional
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control gain can be calculated as 0.094. The damping ratios for the first three modes of the four specimens

obtained by both experiment and simulation are plotted in Fig. 8. Fig. 8 shows that the damping ratios

obtained by theory are in a good agreement with those measured in the experiment. For example, for the

four specimens, theoretical damping ratios of the first mode are 0.0675, 0.06404, 0.06149 and 0.05903 res-

pectively, and those measured in the experiment are 0.072, 0.066, 0.065 and 0.063, the relative errors are less

than 7%. For the first mode, the measured damping ratios are slightly larger than the theoretically predicted
ones because the natural damping is not considered in the theoretical calculation. However, it is noted that

the test damping ratios for the second and third modes are smaller than theoretical ones. This is probably

because the relatively low sampling rate (125 Hz) in the control loop affects the control efficiency of mode 2

and mode 3. In addition, the active control of higher modes may be affected more easily than that of the

first mode by factors such as phase lag and external disturbances.

In the second test, we designed a sensitive controller for the first vibration mode based on the MVO as

described in Section 2 to detect debonding in the specimens used in the first test. Firstly, we deliberately

adjusted the controller to a critical condition (oscillation) for specimen 1 with perfectly bonded actuators.
To this end, the natural frequency and damping ratios are selected as xc ¼ 2p � 2:4 rad/s and

fc1 ¼ fc2 ¼ 0:02, respectively, and the control gain is taken as g ¼ 0:0016� 100=ð41; 220� 10�12Þ ¼
3881610:9. The closed-loop response of the controlled beam to a disturbance is shown in Fig. 9a. It can be

seen that the vibration amplitude of the controlled beam subjected to a transient loading almost keep

unchanged, which indicates that the controlled beam is critically stable. It is expected that a small frequency

change cause by a debonding may destabilize the unrobust control. Then the same sensitive controller was

applied to specimen 2 and 3 respectively without changing any parameters in the controller and the MVO.

The responses of specimen 2 and 3, controlled by the sensitive controller defined in specimen 1, to an
external transient loading are shown in Fig. 9b and c respectively. Clearly, the small frequency difference

between specimen 1 and 2 (or specimen 3) caused by the debonding makes the closed loop control unstable.

It is easy to qualitatively identify the presence of debonding from the rapidly increasing amplitude of the

specimens. This test shows that the present detect methodology can pick up small frequency change due to

the amplifying effect of the deliberately designed sensitive controller based on MVO.

It is worth pointing out that the above detection test of debonding using different specimens may not be

absolutely accurate. This is because the second test aims to experimentally verify the detection method of a

frequency shift due to change in only one structural parameter, e.g., debonding. Due to limited manu-
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facturing facilities, it is extremely difficult, if not impossible, to artificially introduce the debonding as the

only change to the same specimen system parameters. Therefore, in addition to the introduced debonding,

there may be other parameters, such as manufacturing tolerance and support condition, present that may

also contribute to the frequency shift.

The third test is designed to demonstrate the effectiveness and practicality of the detection method using

the sensitive controller in terms of identifying frequency changes caused by an attached concentrated mass,
rather than stringently realizing debonding as the only one parameter change. A sensitive MVO controller

is designed for specimen 1 and the parameters in the controller are the same as test two so that the active

control of specimen 1 is in a critical status. In this case, the closed loop control of the beam is tailored very

sensitive to frequency changes. When two small mass patches of 2 mm are attached at the free end of the

specimen using double-sided adhesive tapes, the slight change in its fundamental frequency is even not
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Fig. 9. Response of the sensitive control system to actuator debonding: (a) perfectly bonded specimen, (b) debonding length of 0.5 cm

and (c) debonding length of 1.0 cm.
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noticeable using our equipment. However, this slight frequency change caused by the mass attachment can

be easily detected by the increasing vibration amplitude since it makes the active control unstable. The

attachment of two mass patches of 3 mm decreases the frequency to 2.43 Hz approximately, and it also

destabilizes the control system, as shown in Fig. 10.
The experiment demonstrated the concept of active detection of small damage in structures using a

deliberately designed sensitive MVO controller. Even a small frequency change due to structural damage,

after amplified by the sensitive controller, will destabilize the controlled structure, and consequently, it can

be easily determined by observing the increasing vibration amplitude. In practice, the instability of a

controlled structure may be not acceptable. A possible way of applying this detection concept is that the

controller starts the sensitive ‘‘detection mode’’ for a short period at a pre-selected interval, and it operates

in the robust mode in most of the time. Another possible way of using this concept is that the detection

procedure is performed on a virtue system whose parameters are measured in real-time from true structure.
In addition, since control failure of an unrobust controller may be caused by several other factors in ad-

dition to the structural damages. In this case, actuator debonding is only one of the possible reasons for
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control destabilization, and therefore, other factors should be also carefully checked before a final detection

conclusion is drawn.

6. Illustrative examples and analysis

As an illustrative example, consider a cantilevered host beam with two pairs of piezoelectric patches,

shown in Fig. 5. The left piezoelectric patch pair, 4/60 long and located 1/60 from its left end to the clamped

end of the beam, is used as the actuator pair. The right piezoelectric pair, which is also 4/60 long and

located 5/60 from its left end to the clamped end, serves as sensors. In this example, only the upper one in

the sensor pair is used as the sensor. The parameters used in the example are: v1 ¼ v2 ¼ v3 ¼ 0:3,
mv1 ¼ mv3 ¼ 0:34, a2 ¼ 1=600, b1 ¼ b3 ¼ 0:9, bv1 ¼ bv3 ¼ 24=700, g1 ¼ g3 ¼ 3:9� 10�8, g2 ¼ 1:39� 10�8,

u1 ¼ u3 ¼ 0:5, uv1 ¼ uv3 ¼ 0:15, ðb2 ¼ u2 � 1Þ.
Firstly, to perform active control of the beam using the MVO given in Eq. (7), the natural frequencies of

the beam should be calculated. Table 3 presents the first 10 eigenvalues of the open loop beam, which gives

the first 10 natural frequencies of the beam. Compared with the host beam itself, the bonded piezoelectric

patches on the host beam increases its first two modal frequencies remarkably and decreases its third to

tenth modal frequencies to different extent.

Table 3

The first 10 eigenvalue pairs of the open loop beam

Beam with piezo-patches Host beam only

j1 �4.2598i �3.5160i
j2 �24.1919i �22.0342i
j3 �61.5957i �61.6955i
j4 �115.4765i �120.8957i
j5 �192.1925i �199.8431i
j6 �288.6486i �298.5196i
j7 �397.5756i �416.9218i
j8 �526.6086i �555.0445i
j9 �688.5980i �712.8815i
j10 �881.7859i �890.4261i
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When an edge debonding occurs between the piezoelectric actuator patch and the host beam, the fre-

quencies of the smart beam change. For the uncontrolled beam, the fundamental frequency will slightly

change with the debonding length and debonding locations, as shown in Fig. 11. In Fig. 11, the effects of the

edge debondings with different lengths introduced in the upper actuator patch on the fundamental fre-
quency are given. It can be seen from Fig. 11 that an edge debonding of the piezoelectric patch will lead to a

reduction of the fundamental frequency of the beam. When the edge debonding is closer to the clamped end

of the beam, it decreases the fundamental frequency more remarkably. However, the frequency change

caused by a small debonding is very small. For example, a 2.5% edge debonding at the left end of the left

piezoelectric patch results in a 0.15% reduction of the fundamental frequency. Detection of such a small

frequency change can be quite difficult if not impossible.

Secondly, the closed loop control of the beam with perfectly bonded piezoelectric actuator patches

should be performed. In general, the higher order controlled modes are much more sensitive to the deb-
onding of the piezoelectric than the lower order modes. For example, when a beam is controlled by a

collocated piezoelectric actuator/sensor pair, the higher order modes are easily destabilized by the actuator

debonding (Sun and Tong, 2002). However, in practice, the higher order modes are not easy to be con-

trolled and they are more likely affected by uncertainties, and the detection based on which may not be

reliable. Therefore, in order to detect small debonding of the piezoelectric patches by closed loop control,

the control system should be made as simple as possible and the control effect should be easily observed. To

this end, we aim at detecting the debonding of the piezoelectric patches by controlling the first mode of the

beam only. When using the MVO (2) and (3) to control the first mode, the frequencies in both observers are
chosen to be equal to the fundamental natural frequency (i.e. 4.26) of the beam. In this example, the same

damping ratios in the two observers are used, i. e. fc ¼ fc1 ¼ fc2.
The active damping ratio for the controlled mode depends on the control gain and the damping ratios

used in the observers, as shown in Fig. 12. When closed loop control provides positive active damping ratio

to the controlled mode, the controlled mode is stable. If the active damping ratio is negative, the controlled

mode becomes unstable. For detection purpose, the control system should be designed stable in the perfect

bonding case. On the other hand, the control system should be sensitive enough to detect small frequency

change of the system, which requests that the active damping ratio should be very small, as indicated in Fig.
3. To this end, we choose the damping ratio in the observers as 0.02, and take the nondimensional control

as 5� 10�5. In this case, when the piezoelectric actuator patches are perfectly bonded on the host beam, the

first eigenvalue of the controlled beam is )0.000043+ 4.175i which has a negative real part and hence the
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control of the first modes is stable. However, the active damping ratio for the first mode is 0.001%, which

means the closed control is very sensitive.

Thirdly, the edge debondings of the upper actuator patch are to be detected by the deliberately designed

sensitive control system. To this end, place an edge debonding of 2.5%, 5%, 7.5%, 10%, 12.5% and 15% of

the original length at the both ends of the upper actuator patch respectively, the first eigenvalue of the

closed loop system are calculated from Eq. (38). For different locations of the debonding, the root loci of

the controlled system are presented in Fig. 13 as the debonding length changes. In this figure, all root loci

start from the point ()0.000043+ 4.175i) near the imaginary axis but on the left plane, which indicates that
the designed control system is stable but sensitive for the perfect bonding case. As the debonding length

increases, the real part of the eigenvalue increases too and the root loci enter into the right half plane. For

example, a 2.5% debonding at the left end of the upper actuator patch alters the first eigenvalue from

)0.000043+ 4.175i to 0.001+ 4.173i, which makes the control of the first mode unstable. The similar trend

of the root loci with the different length of the debonding at the right end of the actuator patch can be

observed. However, the debonding with same length at the right end of the actuator causes less change of

the first eigenvalue than that at the left end.
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Since the process from stable to unstable state can lead to a rapid increasing of the vibration amplitude,

it is easy to be observed, and hence a small debonding of the actuator patch can be easily detected. Fig. 13

shows that a very small debonding in the upper piezoelectric actuator patch can destabilize the controlled

mode and consequently can be detected using the sensitive closed loop control system.
Fourthly, we estimate the debonding length of the actuator patch by designing control system with

different sensitivities. The sensitivity of the control system to the debonding of the actuator patch is de-

termined by the control gain and the damping ratios in the MVO. When the damping ratio in the modal

velocity varies slightly, the maximum debonding length that the control system can tolerate is also changed.

For example, when the control gain is 5� 10�5 and the damping ratio is 0.0215, the control system can

tolerate a 10% edge debonding of the actuator patches, whereas it can only endure a 5% debonding when

the damping ratio is 0.0205, as shown in Fig. 14. In other words, if the first mode controlled by the MVO

with damping ratio 0.0205, it becomes unstable only when the debonding length is larger than 5%. Simi-
larly, if the damping ration in MVO is 0.0215, the control collapses only when the debonding length is

larger than 10%. In such a way, the debonding length of the actuator patch can be estimated using control

system with different sensitivities.

7. Conclusion

A practical active control based detection scheme is presented to identify small frequency shift caused by

small damages in a controlled structure. A MVO is designed to perform active vibration control of beams

using piezoelectric actuator/sensor patches. By properly choosing the parameters in the MVO, the closed

loop control system can be made sensitive to small frequency change. In order to apply this method to

detect debonding of piezoelectric patches on a smart beam, a detailed model of beam with partly debonded
piezoelectric patches is established based and a characteristic equation is also derived. The established

mathematical model, the obtained eigenvalues and the MVO are validated by experiment and good

agreement between experimental and theoretical results is observed. The simulation example shows that the

active control based detection method is effective in detecting small actuator debonding. It is found that

even a debonding whose length is only 0.1% of the entire beam can destabilize the designed sensitive control

system, and thus it can be detected.
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